
Computational Power of Mobile Robots: Discrete Version
Avisek Sharma Mr.

Department of Mathematics
Jadavpur University

Kolkata, West Bengal, India
aviseks.math.rs@jadavpuruniversity.in

Pritam Goswami Mr.∗
Department of Computer Science and

Engineering
Sister Nivedita University
Kolkata, West Bengal, India

pgoswami.academic@gmail.com

Buddhadeb Sau Dr.
Department of Mathematics

Jadavpur University
Kolkata, West Bengal, India

buddhadeb.sau@jadavpuruniversity.in

Abstract

In distributed computing by mobile robots, robots are deployed
over a region, continuous or discrete, operating through a sequence
of look-compute-move cycles. An extensive study has been carried
out to understand the computational powers of different robot
models. The models vary on the ability to 1) remember constant size
information and 2) communicate constant size message. Depending
on the abilities the different models are 1) OBLOT (robots are
oblivious and silent), 2) FSTA (robots have finite states but silent),
3) FCOM (robots are oblivious but can communicate constant
size information) and, 4) LUMI (robots have finite states and can
communicate constant size information). Another factor that affects
computational ability is the scheduler that decides the activation
time of the robots. The main three schedulers are fully-synchronous,
semi-synchronous and asynchronous. Combining the models (𝑀)
with schedulers (𝐾 ), we have twelve combinations𝑀𝐾 .

In the euclidean domain, the comparisons between these twelve
variants have been done in different works for transparent robots,
opaque robots, and robots with limited visibility. There is a vacant
space for similar works when robots are operating on discrete re-
gions like networks. It demands separate research attention because
there have been a series of works where robots operate on different
networks, and there is a fundamental difference when robots are op-
erating on a continuous domain versus a discrete domain in terms
of robots’ movement. This work contributes to filling the space by
giving a full comparison table for all models with two synchronous
schedulers: fully-synchronous and semi-synchronous.

CCS Concepts

• Theory of computation→ Distributed algorithms.

Keywords

Distributed computing, model comparison, oblivious robots, finite-
state, finite-communication, robots with lights, discrete domain.

∗The author was a full time PhD student at the Department of Mathematics, Jadavpur
University while developing the work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICDCN 2025, January 04–07, 2025, Hyderabad, India

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1062-9/25/01
https://doi.org/10.1145/3700838.3700870

ACM Reference Format:

Avisek Sharma Mr., Pritam Goswami Mr., and Buddhadeb Sau Dr.. 2025.
Computational Power of Mobile Robots: Discrete Version. In 26th Interna-

tional Conference on Distributed Computing and Networking (ICDCN 2025),

January 04–07, 2025, Hyderabad, India. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3700838.3700870

1 Introduction

In distributed computing swarm robotics is a well-studied area. The
last two decades have been dedicated to studying different problems
like gathering, pattern formation, exploration, and dispersion etc. The
majority of problems have been dealt with in both, first in contin-
uous domains, then in discrete domains. Continuous domains are
Euclidean planes, continuous cycles, etc. and discrete domains are
different types of finite and infinite graphs. In these problems robots
are point computing units deployed over some domain, continuous
or discrete. The robots are generally autonomous (the robots do
not have central control), identical (indistinguishable from phys-
ical appearance), anonymous (the robots do not have any unique
identifier) and homogeneous (all robots have same capabilities and
runs the same algorithm). The robots operate in look-compute-move

(LCM) cycles. On activation, a robot enters in look phase where it
finds out the positions of the other robots in its vicinity. Then it
enters into compute phase where it runs the inbuilt algorithm to
find out where to move or stay put. Next, in move phase the robot
moves or stays put according to the decisions in compute phase. In
continuous domains, the robots have the freedom to move at any
distance with any precision. On the other hand, in discrete domain
or in networks the robots are only allowed to move to an adjacent
node of its current position. A robot cannot stop in between an
edge connecting two nodes. Problem have been considered in dis-
crete domains because sometimes in the practical field the infinite
precision in movement by robots is not possible. Also, sometimes
the domains are engraved with a predefined networks, like star
graphs, line graphs, rectangular and triangular grids, etc.

The robot models vary on robot capabilities. The two fundamen-
tal capabilities are memory and communication. There are main
four models: 1) OBLOT , 2) FSTA, 3) FCOM and 4) LUMI.
The OBLOT model (formally introduced in [19]) is the weakest
one. In this model, the robots are oblivious, i.e., they do not have
persistent memory to remember past actions or past configurations.
Also, in this model robots are silent, i.e., they do not have any com-
munication ability. In the LUMI model the robots are equipped
with persistent lights that can take finitely many colors. This model
is formally introduced in [6]. At the end of the compute phase, a
robot changes the color of the lights as determined by the algorithm.
Each robot can see its own color in a look phase. Thus, it serves

231

https://orcid.org/0000-0001-8940-392X
https://orcid.org/0000-0002-0546-3894
https://orcid.org/0000-0001-7008-6135
https://doi.org/10.1145/3700838.3700870
https://doi.org/10.1145/3700838.3700870
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3700838.3700870&domain=pdf&date_stamp=2025-01-04


ICDCN 2025, January 04–07, 2025, Hyderabad, India Avisek Sharma Mr., Pritam Goswami Mr., and Buddhadeb Sau Dr.

as a finite memory. Next, other robots can see its lights. Thus, it
serves as a communication architecture through which it can com-
municate a finite bit of information to other robots. The LUMI
model is the strongest in terms of memory and communication. The
other two intermediate models are introduced in [12]. We have the
first intermediate model FSTA. In the FSTA model lights of a
robot are internal, i.e., it is only visible to itself. Thus, the robots
only have finite persistent memory, but the robots are deprived of
communication ability. The next intermediate model is FCOM.
In this model, the lights of a robot are external, i.e., it cannot see
color of its light. Thus, it only gives the ability to communicate a
finite number of bits but has no persistent memory.

Next, another key aspect for solving a problem is the considered
scheduler. The scheduler is considered an entity that decides when
to activate a robot. There are two main types of scheduler. In syn-

chronous scheduler, the time is divided into equal rounds. In each
round, a set of robots are activated and they simultaneously per-
form their LCM cycle. In the fully-synchronous scheduler (Fsync),
in each round, all the robots are activated by the scheduler. On the
other hand, in semi-synchronous scheduler (Ssync), introduced in
[19], a subset of all robots are activated in a particular round. A
fair scheduler activates each robot infinitely often. Here we assume
that the scheduler is fair. In an asynchronous (Async)scheduler,
introduced in [10], the robots operate independently of each other
and they have no synchrony at all. Also, the length of an LCM
cycle of a robot can be unbounded and be different in different
activations. A variant 𝑀𝐾 is a model 𝑀 together with a scheduler
𝐾 . For convenience we shall denote 𝑀Fsync, 𝑀Ssync, and 𝑀Async

respectively by𝑀𝐹 ,𝑀𝑆 , and𝑀𝐴 .
Let X and Y be two variants. Then X > Y denotes that the X

is computationally more powerful variant than Y, X ≡ Y denotes
that the X is computationally equivalent to Y, and X ⊥ Y denotes
that X and Y are computationally incomparable. The works in
[2, 3, 6, 11, 13, 15] refine the computational landscape when trans-
parent robots are operating on the euclidean plane. Then in [9],
the authors refine the computational landscape when the opaque
(non-transparent) robots are operating on the euclidean plane. In
the above works, the robots have full visibility. In a similar work in
[5], the authors considered limited visibility and in this work also,
the robots operate on euclidean plane. Similar works are required
when the robots are operating on different types of networks. A
vast research work has been dedicated to investigating problems
like gathering, pattern formation, etc. on different networks. For
example, in [17] the rendezvous problem (gathering of two robots)
has been dealt with in an arbitrary network, in [1] the gathering
problem has been considered in discrete ring or cycle graph, in
[18] the arbitrary pattern formation problem has been considered
in an infinite rectangular grid. From the above-mentioned model,
comparison works for continuous versions, we observe that almost
every problem considered for comparison cannot be converted to
get a similar result for discrete versions. So a fresh set of prob-
lems and a completely different research focus are required for the
discrete version.

Why separate attention is needed. In the opinion of the au-
thors, comparison in the discrete domain is slightly more difficult
than the comparison in the continuous domain. The reason is as

follows. In the continuous domain, the robots can be directed to
move at any distance and in any direction. But through finite mem-
ory or finite communication, it is not possible to remember or
communicate a real number. This limitation has been exploited in
the previous works. But in a discrete domain, moving distance is
bounded by one hop, and possible directions is also finitely many,
as a robot can move to any one of the finitely many adjacent nodes.
So, the same method of exploitation does not work in discrete
domains. To be precise, in [11, 15] convergence problem is consid-
ered to compare two the models, which cannot be considered in
discrete setting. Next, in [11] a problem called TRAPEZOID FOR-

MATION is considered where it is shown that the problem is not
solvable in OBLOT𝐴 . This exploits the fact that in an asynchro-
nous scheduler, a snapshot by a robot can contain a moving robot.
It is not distinguishable from the snapshot that a robot is moving
or stationery at the time moment. Whereas in a discrete setting a
robot, seen on an edge connecting two vertices, is moving. Thus,
it is distinguishable. From these examples it is evident that some
completely different problems in nature need to be considered.

To the best of our knowledge, [7] is the only work where authors
refine the landscape when the robots are operating on graphs. In
[7], authors did not consider the models FSTA and FCOM. In
this work, we give the full computational landscape for all variants
𝑀𝐾 , where 𝑀 ∈ {OBLOT , FSTA, FCOM, LUMI} and
𝐾 ∈ {Fsync, Ssync}. And, also refines the computational landscape
for the Async scheduler. In the Table 1, the full comparison is given.
In our work the robots are disoriented, i.e., it does not have an
agreed notion of clockwise sense or any direction or handedness.
The robots have full unobstructed visibility.

2 Model and Preliminaries

2.1 Robots

A set 𝑅G = {𝑟1, 𝑟2, . . . , 𝑟𝑛} of 𝑛 mobile computing units, called
robots operating on a graph G (can be finite or infinite) embedded
on the euclidean plane. The robots are anonymous, i.e., the robots
do not have any unique identifier; identical, i.e., the robots are
indistinguishable from physical appearance; autonomous, i.e., the
robots have no central control; homogeneous, i.e., the robots have
same capabilities and run the same algorithm. A robot can rest on
the nodes of the graphs, and from a node, a robot moves to another
adjacent node. A robot cannot stop on an edge connecting to nodes.
The robots are equipped with a local coordinate system where the
robot considers itself at its origin and can find the position of other
robots.

Look-Compute-Move cycle. The robots operate through a
sequence of look-compute-move (LCM) cycles. On activation, the
robots enter into look phase. In this phase, the robot takes an instan-
taneous snapshot of the surroundings. Thus, it finds out position
and states (as declared) of other robots with respect to its local
coordinate system. After that, the robot enters into compute phase.
In this phase, the robot runs an inbuilt algorithm that takes the
information from the snapshot as input. Then it results in a destina-
tion position. The destination position is either an adjacent node of
the node, or the node itself where the robot is currently situated at.

232



Computational Power of Mobile Robots: Discrete Version ICDCN 2025, January 04–07, 2025, Hyderabad, India

Figure 1: Comparison Table

In move phase, the robot moves towards the computed destination
position or, makes a null movement and stays put.

After the execution of an LCM cycle, a robot becomes inactive.
Initially, all robots are inactive. An adversarial scheduler is assumed
to be responsible for activating robots. The look phase is consid-
ered instantaneous and it is considered as the time instant of the
snapshot. The processing and gathering of information from the
snapshot is considered in the compute phase. The compute phase
ends when the robot starts moving and enters into the move phase.
The move phase includes the mechanical movement of the robot.

Considered Robot Models. The weakest and classical robot
model isOBLOT . In thismodel, the robots are not further equipped
with any technology that acts as a persistent memory or commu-
tation architecture. Thus, in this model the robots are oblivious
(absence of persistent memory) and silent (absence of communi-
cation ability). Hence, it cannot remember its past actions or past
configurations from the previous LCM cycle.

Another standard model in the literature is LUMI. In this
model, each robot 𝑟 is equipped with a register 𝐿𝑖𝑔ℎ𝑡 [𝑟 ] called light.
It can take values from a finite set𝐶 . Elements of the sets are called
colors. The color of the light of a robot is visible to other robots.
A color can be set to the light at the end of the compute phase
in an LCM cycle. The color of the light remains persistent in the
next cycle and it does not get reset automatically at the end of a
cycle. In the LUMI model the snapshot also consists of colors.
Thus for each robot, it gets a pair (position, color). A robot can have
more than one light. For these cases, if the robot has 𝑘 lights, the
color can be considered as an 𝑘 tuple (𝑟 .𝑙𝑖𝑔ℎ𝑡1, . . . , 𝑟 .𝑙𝑖𝑔ℎ𝑡𝑘 ) where
𝑟 .𝑙𝑖𝑔ℎ𝑡𝑖 is a color from 𝐶 . Thus, it is equivalent to the case having
one light with color set 𝐶𝑘 (cartesian product of 𝑘 number of 𝐶).
Note that, in the LUMI model the set 𝐶 must have at least two
colors. If 𝐶 has only one color then it is technically an OBLOT
model.

There are two intermediate models of in between the above two
which are FSTA and FCOM. In the first model, the light is
internal. This means that the color of the light is only visible to the
robot itself but not to other robots. Each color can be considered
a different state of the robots. These robots are silent but they
are finite-state. For the second model the lights are external. This
means the colors of the light are visible to other robots but not to
itself. This is used to communicate its color with other robots but
it cannot see its own color in the next LCM cycle. Thus, the robots
are oblivious but enabled with finite communication.

Here, a graph G is considered as an embedded graph, embedded
on an Euclidean plane. Suppose a set of more than one robot is
placed on G. Let 𝑓 be a function from the set of vertices of 𝐺 to
N ∪ {0}, where 𝑓 (𝑣) is the number of robots on the vertex 𝑣 of 𝐺 .
Then the pair (𝐺, 𝑓 ) is said to be a configuration of robots on G.

Schedulers. Depending on the activation schedule and time
duration of LCM cycles of the robots there are two main types of
schedulers. First, in a synchronous scheduler, the time is divided
equally into rounds. In each round, activated robots simultaneously
execute all the phases of the LCM cycles. In a fully-synchronous,
(Fsync) scheduler in each round all the robots present in the sys-
tem get activated. In a semi-asynchronous scheduler (Ssync), a
nonempty subset of robots is activated in the scheduler and all
activated robots simultaneously execute all the phases of the LCM
cycles. A fair scheduler activates each robot infinitely often. We
consider all schedulers to be fair. Next, in an asynchronous sched-
uler (Async) there is no common notion of time for robots. Each
robot independently gets activated and executes its LCM cycle. The
time length of LCM cycles, compute phases, and move phases of
robots may be different. Even the length of two LCM cycles for
one robot may be different. The gap between two consecutive LCM
cycles, or the time length of an LCM cycle for a robot, is finite but
can be unpredictably long. We consider the activation time and

233



ICDCN 2025, January 04–07, 2025, Hyderabad, India Avisek Sharma Mr., Pritam Goswami Mr., and Buddhadeb Sau Dr.

the time taken to complete an LCM cycle to be determined by the
adversary.

2.2 Problems and Computational Relationships

Let M = {OBLOT , FSTA, FCOM, LUMI} be the set of
models considered in this work, and S = {Fsync, Ssync, Async}
be the set of all considered schedulers. A variant 𝑀𝐾 denotes a
model 𝑀 together with scheduler 𝐾 . For convenience we shall
denote𝑀Fsync,𝑀Ssync, and𝑀Async respectively by𝑀𝐹 ,𝑀𝑆 , and
𝑀𝐴 .

A problem (or, task) is described by a finite or infinite enumer-
able sequence of configurations together with some restrictions on
the robots. The problem description implicitly gives a set of valid
initial configurations. An algorithm A is said to solve a problem
𝑃 in a variant 𝑀𝐾 if starting from any valid initial configuration,
any execution of A by a set of robots 𝑅 in the model 𝑀 under
scheduler 𝐾 can form the configurations given in the sequence in
the prescribed order maintaining the restrictions mentioned in 𝑃 .
For further insight see [4].

Let 𝑀 ∈ M be a model and 𝐾 ∈ S, then 𝑀 (𝐾) is the set of the
problems that can be solved in model 𝑀 under then scheduler 𝐾 .
Let𝑀1, 𝑀2 ∈ M and 𝐾1, 𝐾2 ∈ S.

• We say that a variant𝑀𝐾1
1 is computationally not less powerful

than a variant 𝑀𝐾2
2 , denoted as 𝑀𝐾1

1 ≥ 𝑀
𝐾2
2 , if 𝑀1 (𝐾1) ⊇

𝑀2 (𝐾2).
• We say that a variant𝑀𝐾1

1 is computationally more powerful

than a variant 𝑀𝐾2
2 , denoted as 𝑀𝐾1

1 > 𝑀
𝐾2
2 , if 𝑀1 (𝐾1) ⊋

𝑀2 (𝐾2).
• We say that a variant𝑀𝐾1

1 is computationally equivalent to a
variant𝑀𝐾2

2 , denoted as𝑀𝐾1
1 ≡ 𝑀𝐾2

2 , if𝑀1 (𝐾1) = 𝑀2 (𝐾2).
• We say that a variant𝑀𝐾1

1 is computationally orthogonal (or,

incomparable) to a variant 𝑀𝐾2
2 , denoted as 𝑀𝐾1

1 ⊥ 𝑀
𝐾2
2 , if

𝑀1 (𝐾1) ⊉ 𝑀2 (𝐾2) and𝑀2 (𝐾2) ⊉ 𝑀1 (𝐾1).
One can easy observe the following result.

Lemma 2.1. For any 𝑀 ∈ M and 𝐾 ∈ S, (1) 𝑀𝐹 ≥ 𝑀𝑆 ≥ 𝑀𝐴
,

(2) LUMI𝐾 ≥ FSTA𝐾 ≥ OBLOT𝐾 , and (3) LUMI𝐾 ≥
FCOM𝐾 ≥ OBLOT𝐾 .

3 Comparisons in FSYNC

This section compares the models OBLOT , FSTA, FCOM and
LUMI in a fully-synchronous scheduler.

Equivalency of FCOM𝐹
and LUMI𝐹 : First, we show the

equivalency of the models FCOM and LUMI in a fully syn-
chronous scheduler. For that, we recall the similar result in [14]
that deals with the same when the robots are operating in the eu-
clidean plane. The proof given in [14] is independent of the fact
that whether the robots are operating on a euclidean plane or a
discrete domain. Hence we can conclude the following result.

Theorem 3.1. FCOM𝐹 ≡ LUMI𝐹 .

Next, let us define a problem named moveOnce below for further
developments in this section.

Definition 3.2. Let two robots 𝑟𝑖 (𝑖 = 1, 2) be placed on a vertex
𝑣𝑖 (𝑖 = 1, 2) of a five cycle with a chord such that 𝑣1 and 𝑣2 are
not adjacent, and degree of each 𝑣𝑖 is 2 (Figure 2). The problem
moveOnce asks (1) the robot, that has an adjacent node with degree
2, to move once to that adjacent node and stay still afterward,
(2) other robot will remain still forever.

Figure 2: An image related to problem moveOnce

Lemma 3.3. ∃𝑅 ∈ R2, moveOnce ∉ OBLOT 𝐹 (𝑅).

Proof. If possible let there exist an algorithm A that solves the
problem in OBLOT 𝐹 . Since the robots are oblivious and have
no communication ability, so after finishing one move of robot 𝑟 ,
the configuration remains the same as the initial one. Thus, on
activation, the robot 𝑟 will again move back to its initial position,
which is a contradiction. □

Lemma 3.4. ∀𝑅 ∈ R2, moveOnce ∈ FSTA𝐴 (𝑅).

Proof. Let the robots have two states: off and done. Suppose
initially both robots have state off. From the graph topology, the
robots can identify which one to move. Let 𝑟1 be the robot that is
supposed to move. Then 𝑟2 does not move at all. Then on activation
first time (when its state is set as off) 𝑟1 shall move changing its
state to done. Next time, on activation it sees its state is set as done,
so it does nothing. Even after the move of 𝑟1 is done, the robot 𝑟2
can identify itself as the robot that is not supposed to move. Thus,
the above-described algorithm successfully solves moveOnce. □

Theorem 3.5. For each𝑀 ∈ {FSTA, FCOM, LUMI},
OBLOT 𝐹 < 𝑀𝐹

.

Proof. lemma 3.3 and Lemma 3.4 show that there exists a prob-
lem (moveOnce) that is solvable in FSTA𝐹 , thus solvable in
LUMI𝐹 , but not solvable in OBLOT 𝐹 . The problem moveOnce
is solvable in FCOM𝐹 from Theorem 3.1. Hence the result fol-
lows. □

Next, introduce a new problem by modifying the problem ¬𝐼𝐿
defined in [14] for the discrete version.

Definition 3.6. Let three robots be placed on a geometric graph
given in Figure 3. The initial configuration formed by robots is
Config-I (Figure 4). In problem ¬𝐼𝐿 the robots are required to move
to form Config-II (Figure 5). from Config-I, then Config-III (Figure 6)
from Config-II.

The following Lemma 3.7 and Lemma 3.8 follow from the same
arguments as given in [14]. Let us recall the arguments briefly in
the next two lines. In the FSTA model it is impossible for 𝑟2
to understand which robot has moved to form Config-II. But in
FCOM model the moving robot can set a distinct color in order
to let 𝑟2 know it.

234



Computational Power of Mobile Robots: Discrete Version ICDCN 2025, January 04–07, 2025, Hyderabad, India

Figure 3: An image related to problem ¬𝐼𝐿

Figure 4: Config-I Figure 5: Config-II

Figure 6: Config-III

Lemma 3.7. ∃𝑅 ∈ R3, ¬𝐼𝐿 ∉ FSTA𝐹 (𝑅).

Lemma 3.8. ∀𝑅 ∈ R3, ¬𝐼𝐿 ∈ F COM𝐴 (𝑅).

Theorem 3.9. FSTA𝐹 < 𝑀𝐹
, for all𝑀 ∈ {F COM, LUMI}.

Proof. Lemma 3.7 and Lemma 3.8 show that the ¬𝐼𝐿 problem
is solvable in FCOM𝐹 but not solvable in FSTA𝐹 . Next, from
Theorem 3.1we haveFCOM𝐹 andLUMI𝐹 are equivalent. Thus,
the result is proven. □

4 Comparisons in SSYNC

This section compares the models OBLOT , FSTA, FCOM,
and LUMI in a semi-synchronous scheduler.

Theorem 4.1. For each𝑀 ∈ {FSTA, FCOM, LUMI},
OBLOT𝑆 < 𝑀𝑆

.

Proof. In Lemma 3.3 and Lemma 3.4, we showed that there
exists a problem solvable in FSTA𝑆 , thus also in LUMI𝑆 , but
not solvable in OBLOT𝑆 . Also, in Lemma 3.7 and Lemma 3.8,
we showed that there exists a problem solvable in FCOM𝑆 but
solvable in OBLOT𝑆 . Hence the result follows. □

In Lemma 3.3, we have shown that moveOnce is unsolvable in
OBLOT 𝐹 . In the following Lemma 4.2, we show that moveOnce
is unsolvable in FCOM𝑆 .

Lemma 4.2. ∃𝑅 ∈ R2, moveOnce ∉ FCOM𝑆 (𝑅).

Proof. Let 𝑅 = {𝑟1, 𝑟2}. If possible let there exist an algorithm
A that solves the problem in FCOM𝑆 . Let 𝑟2 be the robot that
needs to move. Let both robots be activated at every round. Let at
𝑘𝑡ℎ round 𝑟1 first time moves. Consider another execution where
from first to (𝑘−1)𝑡ℎ round, both robots get activated, but in 𝑘𝑡ℎ , 𝑟1
gets activated but 𝑟2 is not. Since the robots have no shared notion
of handedness or charity, the view of 𝑟1 remains the same at the

start of the (𝑘 + 1)𝑡ℎ round. Thus, in this execution, 𝑟1 will again
move to its initial position, which contradicts the correctness of
the A. □

Theorem 4.3. 𝑀𝑆 < LUMI𝑆 for all𝑀 ∈ {FSTA, FCOM}.

Proof. In Lemma 3.7 and Lemma 3.8 we showed that there exists
a problem that is solvable inLUMI𝑆 but not solvable in FSTA𝑆 .
Then, in Lemma 3.4 and Lemma 4.2 we showed that there exists a
problem that is solvable in LUMI𝑆 but not solvable in FCOM𝑆 .
Hence the result follows. □

Orthogonality of FSTA𝑆
and FCOM𝑆

. We define a new
problem named OSP in the following definition.

Definition 4.4. Suppose, three robots are placed at distinct posi-
tions on an infinite discrete line having Configuration A (Figure 7).
The OSP problem asks the robots to move such that it creates the
following sequence of configurations: <B, C, B, A, B, C, B, A, ...
>, where configuration B and C are given in Figure 8 and Figure 9
respectively.

Figure 7: Configuration A

Figure 8: Configuration B

Figure 9: Configuration C

We show that this problem cannot be solved under semi-synchronous
scheduler.

Lemma 4.5. ∃𝑅 ∈ R3, OSP ∉ FSTA𝑆 (𝑅).

Proof. If possible there is an algorithmA that solves the problem
in a semi-synchronous scheduler. Consider an execution 𝐸 where
all the robots are activated in each round. Then there will be rounds
𝑘1, 𝑘2, 𝑘3, and 𝑘4 such that (𝑘1 < 𝑘2 < 𝑘3 < 𝑘4) and the following
holds true.

• At the end of the 𝑘𝑡ℎ1 round the formed configuration is B
from initial configuration A and remains till start of the 𝑘𝑡ℎ2
round.

• At the end of the 𝑘𝑡ℎ2 round the formed configuration is C
and remains till start of the 𝑘𝑡ℎ3 round.

• At the end of the 𝑘𝑡ℎ3 round the formed configuration is B
and remains till start of the 𝑘𝑡ℎ4 round.

• At the end of the 𝑘𝑡ℎ4 round the formed configuration is A.
Let 𝑟1 be the terminal robot in the initial configuration that is

farther from the middle robot and the 𝑟2 be the other terminal robot.
Let consider another execution 𝐸1 where from (𝑘1 + 1)𝑡ℎ round to
(𝑘3 − 1)𝑡ℎ round the robot 𝑟1 remains inactivated. Then 𝑘𝑡ℎ3 round
the view and state of 𝑟1 for execution 𝐸 is the same as the view and

235



ICDCN 2025, January 04–07, 2025, Hyderabad, India Avisek Sharma Mr., Pritam Goswami Mr., and Buddhadeb Sau Dr.

state of 𝑟1 in 𝑘𝑡ℎ1 round for execution 𝐸1. As according to execution
𝐸 of, in 𝐸1 the 𝑟1 will not decide to move if 𝑟1 is activated in 𝑘𝑡ℎ3
round. Also from the execution of 𝐸, 𝑟2 also does not decide to
move on activation in 𝑘𝑡ℎ3 round. Thus, after 𝑘𝑡ℎ3 round onwards
the configuration shall remain the same which is a contradiction.
Suppose the other way round happens. If 𝑟2 moves at all without 𝑟1
moving then it will create a configuration that yields a contradiction.
Suppose 𝑟1 moves after𝑚 rounds of 𝑘𝑡ℎ3 round. Then if from 𝑘𝑡ℎ1
round if 𝑟2 is not activated for consecutive𝑚 rounds then it creates
a contradictory configuration. Thus, A cannot solve the problem.
Thus the result follows. □

Next, we present an algorithm AlgoOSP that solves the OSP in
FCOM𝑆 . Suppose each robot has an external light that is initially
set off color and can take the color colN, colF, and colT. The
middle robot does nothing and its color remains off. We denote
the color variable of a robot 𝑟 as 𝑐𝑜𝑙𝑜𝑟 .𝑟 .

Algorithm 1: AlgoOSP: for a generic robot 𝑟 where 𝑟 ′
is the other terminal robot; 𝑑 and 𝑑′ are respectively the
distance of 𝑟 and 𝑟 ′ from middle robot
1 if 𝑐𝑜𝑙𝑜𝑟 .𝑟 ′=off then
2 if 𝑑 > 𝑑′ then
3 𝑐𝑜𝑙𝑜𝑟 .𝑟 = colN;
4 𝑟 moves towards the middle robot;
5 else if 𝑑 < 𝑑′ then
6 𝑐𝑜𝑙𝑜𝑟 .𝑟 = off;

7 else if 𝑐𝑜𝑙𝑜𝑟 .𝑟 ′ = colN then

8 if 𝑑 = 𝑑′ then
9 𝑐𝑜𝑙𝑜𝑟 .𝑟 = colN;

10 𝑟 moves away from the middle robot;
11 else if 𝑑 < 𝑑′ then
12 𝑐𝑜𝑙𝑜𝑟 .𝑟 = colF;

13 else if 𝑐𝑜𝑙𝑜𝑟 .𝑟 ′ = colF and 𝑑 > 𝑑′ then
14 𝑐𝑜𝑙𝑜𝑟 .𝑟 = colT;
15 𝑟 moves towards the middle robot;
16 else if 𝑐𝑜𝑙𝑜𝑟 .𝑟 ′ = colT and 𝑑 = 𝑑′ then
17 𝑟 moves away from the middle robot;
18 𝑐𝑜𝑙𝑜𝑟 .𝑟 = off;

Lemma 4.6. The AlgoOSP solves the OSP in model FCOM𝑆
.

Proof. Following lines 1-6 of the Algorithm AlgoOSP the con-
figuration transforms from A to B. Following from lines 7-10 of
the Algorithm AlgoOSP the configuration transforms from B to C.
Following lines 11-15 of the Algorithm AlgoOSP the configuration
transforms from C to B. Following from lines 16-18 of the Algo-
rithm AlgoOSP the configuration transforms from B to A. Then
following lines 5-6 the configuration becomes equal to the initial
configuration that is, the configuration is A with both robots color
off. Thus, we can conclude the result. □

Theorem 4.7. FSTA𝑆 ⊥ FCOM𝑆
.

Proof. In Lemma 3.4 and Lemma 4.2, we showed that there
exists a problem that is solvable in FSTA𝑆 but not solvable in
FCOM𝑆 . In Lemma 4.5 and Lemma 4.6 we showed that there
exists a problem that is solvable in FCOM𝑆 but not solvable in
FSTA𝑆 . Thus the result follows. □

5 Cross-comparison in FSYNC and SSYNC

First, we define a modified version of the Stand Up Indulgent Ren-
dezvous (SUIR) problem in the following.

Definition 5.1. Let two robots be placed on the endpoints of
a line graph of three nodes (Figure 10). One of the robots may
crash (i.e., stop working completely) at any time, and it does not
activate ever after. The problem SUIR asks the robots to meet at
the middle node (node with degree two) unless one of the robots
crashes before gathering. Otherwise, the non-crashed robot moves
to the crashed robot’s position. A robot cannot identify whether a
robot has crashed or not from the snapshot.

Figure 10: An image regarding problem SIUR

Lemma 5.2. ∃𝑅 ∈ R2, 𝑆𝑈 𝐼𝑅 ∉ LUMI𝑆 (𝑅).

Proof. If possible let there exist an algorithm A that solves the
problem in LUMI𝑆 . The scheduler can activate robots in such
a way that it eventually ends up with a configuration where two
robots are in one hop. If in each round only one robot is activated
alternatively then eventually one of the robots will move toward
the other robot, otherwise, the initial configuration will remain
forever. Thus eventually a configuration will be formed where two
robots are one hop away from each other before gathering. After
achieving such a configuration the gathering can be done only if
one of the robots moves toward the other but the other does not.
Suppose the colors of the robots are such that according to the
algorithm say, 𝑟1 is about to move. Then scheduler can choose to
crash 𝑟1. A similar argument can be made for the other robot. Thus,
even if one robot does not move in a particular round, it has to
choose to move eventually towards the other robot.

Let us end up with a configuration having robot 𝑟1 with color 𝑐1
and having robot 𝑟2 with color 𝑐2. If for such a scenario both robots
are supposed to move through then the scheduler will activate both
robots resulting in the same configuration at the end. Suppose for
this configuration 𝑟1 would move but 𝑟2 cannot wait forever at that
position because 𝑟1 can get crashed at its position. If 𝑟1 does not get
activated for enough rounds then 𝑟2 must move towards 𝑟1 after
finite rounds. Let the scheduler not activate 𝑟1 for that many rounds
then 𝑟2 rounds. Then after that, 𝑟2 after that would move towards
𝑟1. In that round, if 𝑟1 also chooses to move then the scheduler may
choose to activate both robots which results same configuration
getting formed again. If 𝑟1 does not move at this round, then also
𝑟1 cannot await there forever using the same argument as we used
earlier. Thus in this way, the scheduler can activate the robots in
such a way that the robots will not ever gather. □

Lemma 5.3. ∀𝑅 ∈ R2, 𝑆𝑈 𝐼𝑅 ∈ OBLOT 𝐹 (𝑅).

236



Computational Power of Mobile Robots: Discrete Version ICDCN 2025, January 04–07, 2025, Hyderabad, India

Proof. We design an algorithm in which, on activation, a robot
shall move towards the other robot. In the first round, if no robot
crashes, then at the end of the round, the gathering will be done.
Otherwise, at the end of the first round, the non-crashed robot
shall move towards the crashed robot. In the next round, the non-
crashed robot will again move toward the crashed robot and gather
there. □

Theorem 5.4. For each𝑀 ∈ M,𝑀𝑆 < 𝑀𝐹
.

Proof. In Lemma 5.2 and Lemma 5.3 we showed that the prob-
lem SUIR is solvable in𝑀𝐹 for all𝑀 ∈ M but not solvable in𝑀𝑆

for all𝑀 ∈ M. Thus, the result follows. □

Theorem 5.5. For each𝑀 ∈ {FSTA, FCOM, LUMI},
OBLOT 𝐹 ⊥ 𝑀𝑆

.

Proof. In Lemma 5.2 and Lemma 5.3, we showed that the prob-
lem SUIR is solvable in OBLOT 𝐹 but not solvable in 𝑀𝑆 for all
𝑀 ∈ {FSTA, FCOM, LUMI}. In Lemma 3.3 and Lemma 3.4
we showed that there exists a problem that solves a problem in
FSTA𝑆 and thus in LUMI𝑆 but not solvable in OBLOT 𝐹 . In
Lemma 3.7 and Lemma 3.8, we showed that there exists a problem
that is solvable in FCOM𝑆 but not solvable in OBLOT 𝐹 . Thus,
the result follows. □

Theorem 5.6. For each𝑀 ∈ {FSTA, FCOM, LUMI},
OBLOT𝑆 < 𝑀𝐹

.

Proof. From Theorem 4.1 this result follows. □

Theorem 5.7. 𝑀𝑆 < LUMI𝐹 for all𝑀 ∈ {FSTA, FCOM}.

Proof. FSTA𝑆 < LUMI𝐹 follows from Theorem 3.9 and
FCOM𝑆 < LUMI𝐹 follows from Theorem 5.4. □

Theorem 5.8. FSTA𝐹 ⊥ 𝑀𝑆
for all𝑀 ∈ {F COM, LUMI}.

Proof. In Lemma 3.7 and Lemma 3.8, we showed that there is
a problem that is solvable in FCOM𝑆 , thus in LUMI𝑆 , but not
solvable in FSTA𝐹 . In Lemma 5.2 and Lemma 5.3, we showed
that there is a problem that is solvable in FSTA𝐹 but not solvable
in LUMI𝑆 , thus not in FCOM𝑆 . Thus, the result follows. □

Theorem 5.9. FCOM𝐹 > 𝑀𝑆
for all𝑀 ∈ {FSTA, LUMI}.

Proof. Since fromTheorem 3.1we haveFCOM𝐹 andLUMI𝐹
are equivalent computationally. Therefore rest we need to show
LUMI𝐹 > 𝑀𝑆 for all 𝑀 ∈ {FSTA, LUMI}. LUMI𝐹 >

FSTA𝑆 follows from Theorem 5.7 and LUMI𝐹 > LUMI𝑆
follows from Theorem 5.4. □

6 Comparisons under ASYNC scheduler

In this section we investigate comparisons when one variant has
scheduler Fsync. From a result of [7], we have the following Theo-
rem 6.1.

Theorem 6.1 ([7]). LUMI𝑆 ≡ LUMI𝐴 .

Theorem 6.2. 𝑀𝐴 < 𝑀𝐹
for all𝑀 ∈ M.

Proof. From Theorem 5.4, the result follows. □

Theorem 6.3. For each𝑀 ∈ M and𝑀1 ∈ {LUMI, FCOM},
𝑀𝐴 < 𝑀𝐹

1 .

Proof. From Theorem 5.4, Theorem 5.6, and Theorem 5.7,𝑀𝐴 <

𝑀𝐹
1 for all𝑀 ∈ M and𝑀𝐴 < LUMI𝐹 follows. From Theorem 3.1,

LUMI𝐹 ≡ FCOM𝐹 , the rest part of the result follows. □

Theorem 6.4. For each𝑀 ∈ {FSTA, FCOM, LUMI} and
𝐾 ∈ {Ssync, Fsync}, OBLOT𝐴 < 𝑀𝐾

.

Proof. From Theorem 4.1 the result follows. □

Theorem 6.5. For each 𝑀 ∈ {FSTA, FCOM, OBLOT },
LUMI𝐴 > 𝑀𝑆

.

Proof. FromTheorem 4.1 and Theorem 4.3, we haveLUMI𝑆 >

𝑀𝑆 for all𝑀 ∈ {FSTA, FCOM, OBLOT }. Then from Theo-
rem 6.1, the result follows. □

Theorem 6.6. 𝑀𝐴 < LUMI𝑆 for all𝑀 ∈ {FSTA, FCOM}.

Proof. From Theorem 4.3, the result follows. □

Theorem 6.7. For all𝑀 ∈ {OBLOT , FSTA, FCOM},𝑀𝐴 <

LUMI𝐴 .

Proof. In Lemma 3.7 and Lemma 3.8 we showed that there
exists a problem that is solvable in LUMI𝐴 but not solvable in
FSTA𝐴 , thus in OBLOT𝐴 . Then, in Lemma 3.4 and Lemma 4.2
we showed that there exists a problem that is solvable in LUMI𝐴
but not solvable in FCOM𝐴 . Hence the result follows. □

Theorem 6.8. OBLOT𝐴 < 𝑀𝐴
for all𝑀 ∈ {FSTA, FCOM}.

Proof. In Lemma 3.7 and Lemma 3.8 we showed that there
exists a problem that is solvable in FCOM𝐴 but not solvable in
OBLOT𝐴 . Then, in Lemma 3.4 and Lemma 4.2 we showed that
there exists a problem that is solvable in FSTA𝐴 but not solvable
in OBLOT𝐴 . Hence the result follows. □

Theorem 6.9. For all𝑀 ∈ {FSTA, FCOM, LUMI},
OBLOT 𝐹 ⊥ 𝑀𝐴

.

Proof. In Lemma 5.2 and Lemma 5.3, we showed that the prob-
lem SUIR is solvable in OBLOT 𝐹 but not solvable in 𝑀𝐴 for all
𝑀 ∈ {FSTA, FCOM, LUMI}. In Lemma 3.3 and Lemma 3.4,
we showed that there exists a problem that solves a problem in
FSTA𝐴 and thus in LUMI𝐴 but not solvable in OBLOT 𝐹 . In
Lemma 3.7 and Lemma 3.8, we showed that there exists a problem
that is solvable in FCOM𝐴 but not solvable in OBLOT 𝐹 . Thus,
the result follows. □

Theorem 6.10. FSTA𝐹 ⊥ 𝑀𝐴
for all𝑀 ∈ {F COM, LUMI}.

Proof. In Lemma 3.7 and Lemma 3.8, we showed that there is a
problem that is solvable in FCOM𝐴 , thus in LUMI𝐴 , but not
solvable in FSTA𝐹 . In Lemma 5.2 and Lemma 5.3, we showed
that there is a problem that is solvable in FSTA𝐹 but not solvable
in LUMI𝐴 , thus not in FCOM𝐴 . Thus, the result follows. □

Theorem 6.11. For all 𝐾1, 𝐾2 ∈ {Async, Ssync}, FSTA𝐾1 ⊥
FCOM𝐾2

.

237



ICDCN 2025, January 04–07, 2025, Hyderabad, India Avisek Sharma Mr., Pritam Goswami Mr., and Buddhadeb Sau Dr.

Proof. If both 𝐾1 and 𝐾2 are Ssync, then it is Theorem 4.7. In
Lemma 3.4 and Lemma 4.2, we showed that there exists a prob-
lem that is solvable in FSTA𝐴 but not solvable in FCOM𝑆 . In
Lemma 4.5 and Lemma 4.6 we showed that there exists a problem
that is solvable in FCOM𝐴 but not solvable in FSTA𝑆 . Thus,
the rest of the result follows. □

Finally, we achieve the table in the Figure 1. In the next section,
we conclude the work.

7 Conclusion

In this work, a complete computational relationships between four
different models OBLOT , FSTA, FCOM, and LUMI under
two synchronous schedulers Fsync and Ssync when a set of anony-
mous, identical autonomous, homogeneous robots are operating
on a graph embedded on euclidean plane. Also, this work refines
computational landscape for Async scheduler. A series of works
has been dedicated to refine the computational landscape when
robots are operating on an euclidean plane, but the same was miss-
ing when robots are operating on discrete regions like on different
graphs. This work aims to fill the gap. The table in Figure 1 provides
the results obtains in this work. Some of the comparisons in Async
scheduler are still remain open.

Further, in discrete setting there are various other well-used
models. One of them is limited visibility ([16]) or no visibility model.
Some models use infinite memory whereas some models use pebble,
white board model, or face-to-face model of communication (See
[8]). It would be an interesting to consider all the above-mentioned
models to make a comprehensive model-comparison.

Acknowledgments

The first author is currently supported by the University Grants
Commission (UGC) in India, while the second author received
support from UGC during the preparation of this work. The third
author is supported by the Science and Engineering Research Board
(SERB), Government of India.

References

[1] Quentin Bramas, Sayaka Kamei, Anissa Lamani, and Sébastien Tixeuil. 2024.
Stand-Up Indulgent Gathering on Rings. In Structural Information and Communi-

cation Complexity - 31st International Colloquium, SIROCCO 2024, Vietri sul Mare,

Italy, May 27-29, 2024, Proceedings (Lecture Notes in Computer Science, Vol. 14662),
Yuval Emek (Ed.). Springer, 119–137. https://doi.org/10.1007/978-3-031-60603-
8_7

[2] Kevin Buchin, Paola Flocchini, Irina Kostitsyna, Tom Peters, Nicola Santoro, and
Koichi Wada. 2021. Autonomous Mobile Robots: Refining the Computational
Landscape. In IEEE International Parallel and Distributed Processing Symposium

Workshops, IPDPS Workshops 2021, Portland, OR, USA, June 17-21, 2021. IEEE,
576–585. https://doi.org/10.1109/IPDPSW52791.2021.00091

[3] Kevin Buchin, Paola Flocchini, Irina Kostitsyna, Tom Peters, Nicola Santoro,
and Koichi Wada. 2022. On the Computational Power of Energy-Constrained
Mobile Robots: Algorithms and Cross-Model Analysis. In Structural Information

and Communication Complexity - 29th International Colloquium, SIROCCO 2022,

Paderborn, Germany, June 27-29, 2022, Proceedings (Lecture Notes in Computer

Science, Vol. 13298), Merav Parter (Ed.). Springer, 42–61. https://doi.org/10.1007/
978-3-031-09993-9_3

[4] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. 2021. A structured
methodology for designing distributed algorithms for mobile entities. Inf. Sci.
574 (2021), 111–132. https://doi.org/10.1016/J.INS.2021.05.043

[5] Archak Das, Satakshi Ghosh, Avisek Sharma, Pritam Goswami, and Buddhadeb
Sau. 2024. The Computational Landscape of Autonomous Mobile Robots: The
Visibility Perspective. In Distributed Computing and Intelligent Technology - 20th

International Conference, ICDCIT 2024, Bhubaneswar, India, January 17-20, 2024,

Proceedings (Lecture Notes in Computer Science, Vol. 14501), Stéphane Devismes,
Partha Sarathi Mandal, V. Vijaya Saradhi, Bhanu Prasad, Anisur Rahaman Molla,
and Gokarna Sharma (Eds.). Springer, 85–100. https://doi.org/10.1007/978-3-031-
50583-6_6

[6] Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi
Yamashita. 2016. Autonomous mobile robots with lights. Theor. Comput. Sci. 609
(2016), 171–184. https://doi.org/10.1016/J.TCS.2015.09.018

[7] Mattia D’Emidio, Gabriele Di Stefano, Daniele Frigioni, and Alfredo Navarra.
2018. Characterizing the computational power of mobile robots on graphs and
implications for the Euclidean plane. Inf. Comput. 263 (2018), 57–74. https:
//doi.org/10.1016/J.IC.2018.09.010

[8] Giuseppe A. Di Luna, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro.
2024. Black Hole Search in Dynamic Rings: The Scattered Case. In 27th Inter-

national Conference on Principles of Distributed Systems (OPODIS 2023) (Leibniz

International Proceedings in Informatics (LIPIcs), Vol. 286), Alysson Bessani, Xavier
Défago, Junya Nakamura, Koichi Wada, and Yukiko Yamauchi (Eds.). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 33:1–33:18.
https://doi.org/10.4230/LIPIcs.OPODIS.2023.33

[9] Caterina Feletti, Lucia Mambretti, Carlo Mereghetti, and Beatrice Palano. 2024.
Computational Power of Opaque Robots. In 3rd Symposium on Algorithmic Foun-

dations of Dynamic Networks (SAND 2024) (Leibniz International Proceedings in

Informatics (LIPIcs), Vol. 292), Arnaud Casteigts and Fabian Kuhn (Eds.). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 13:1–13:19.
https://doi.org/10.4230/LIPIcs.SAND.2024.13

[10] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. 1999.
Hard Tasks for Weak Robots: The Role of Common Knowledge in Pattern For-
mation by Autonomous Mobile Robots. In Proceedings of the 10th International

Symposium on Algorithms and Computation (ISAAC ’99). Springer-Verlag, Berlin,
Heidelberg, 93–102.

[11] Paola Flocchini, Nicola Santoro, Yuichi Sudo, and Koichi Wada. 2023. On Asyn-
chrony, Memory, and Communication: Separations and Landscapes. In 27th

International Conference on Principles of Distributed Systems, OPODIS 2023, De-

cember 6-8, 2023, Tokyo, Japan (LIPIcs, Vol. 286), Alysson Bessani, Xavier Défago,
Junya Nakamura, Koichi Wada, and Yukiko Yamauchi (Eds.). Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 28:1–28:23. https://doi.org/10.4230/LIPICS.
OPODIS.2023.28

[12] Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Masafumi Yamashita.
2016. Rendezvous with constant memory. Theor. Comput. Sci. 621 (2016), 57–72.
https://doi.org/10.1016/J.TCS.2016.01.025

[13] Paola Flocchini, Nicola Santoro, and Koichi Wada. 2019. On Memory, Communi-
cation, and Synchronous Schedulers When Moving and Computing. In 23rd Inter-

national Conference on Principles of Distributed Systems, OPODIS 2019, December

17-19, 2019, Neuchâtel, Switzerland (LIPIcs, Vol. 153), Pascal Felber, Roy Friedman,
Seth Gilbert, and Avery Miller (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 25:1–25:17. https://doi.org/10.4230/LIPICS.OPODIS.2019.25

[14] Paola Flocchini, Nicola Santoro, and Koichi Wada. 2020. On Memory, Com-
munication, and Synchronous Schedulers When Moving and Computing. In
23rd International Conference on Principles of Distributed Systems (OPODIS 2019)

(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 153), Pascal Fel-
ber, Roy Friedman, Seth Gilbert, and Avery Miller (Eds.). Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 25:1–25:17. https:
//doi.org/10.4230/LIPIcs.OPODIS.2019.25

[15] David G. Kirkpatrick, Irina Kostitsyna, Alfredo Navarra, Giuseppe Prencipe, and
Nicola Santoro. 2024. On the power of bounded asynchrony: convergence by
autonomous robots with limited visibility. Distributed Comput. 37, 3 (2024),
279–308. https://doi.org/10.1007/S00446-024-00463-7

[16] Fukuhito Ooshita and Sébastien Tixeuil. 2022. Ring exploration with myopic
luminous robots. Information and Computation 285 (2022), 104702. https://doi.
org/10.1016/j.ic.2021.104702 Selected Papers from International Symposium on
Stabilization, Safety, and Security of Distributed Systems 2018.

[17] Debasish Pattanayak and Andrzej Pelc. 2024. Deterministic treasure hunt and
rendezvous in arbitrary connected graphs. Inf. Process. Lett. 185 (2024), 106455.
https://doi.org/10.1016/J.IPL.2023.106455

[18] Avisek Sharma, Satakshi Ghosh, Pritam Goswami, and Buddhadeb Sau. 2024.
Space and Move-optimal Arbitrary Pattern Formation on a Rectangular Grid by
Robot Swarms. In Proceedings of the 25th International Conference on Distributed

Computing and Networking, ICDCN 2024, Chennai, India, January 4-7, 2024. ACM,
65–73. https://doi.org/10.1145/3631461.3631542

[19] Ichiro Suzuki and Masafumi Yamashita. 1996. Distributed Anonymous Mobile
Robots. In SIROCCO’96, The 3rd International Colloquium on Structural Information

& Communication Complexity, Siena, Italy, June 6-8, 1996, Nicola Santoro and
Paul G. Spirakis (Eds.). Carleton Scientific, 313–330.

238

https://doi.org/10.1007/978-3-031-60603-8_7
https://doi.org/10.1007/978-3-031-60603-8_7
https://doi.org/10.1109/IPDPSW52791.2021.00091
https://doi.org/10.1007/978-3-031-09993-9_3
https://doi.org/10.1007/978-3-031-09993-9_3
https://doi.org/10.1016/J.INS.2021.05.043
https://doi.org/10.1007/978-3-031-50583-6_6
https://doi.org/10.1007/978-3-031-50583-6_6
https://doi.org/10.1016/J.TCS.2015.09.018
https://doi.org/10.1016/J.IC.2018.09.010
https://doi.org/10.1016/J.IC.2018.09.010
https://doi.org/10.4230/LIPIcs.OPODIS.2023.33
https://doi.org/10.4230/LIPIcs.SAND.2024.13
https://doi.org/10.4230/LIPICS.OPODIS.2023.28
https://doi.org/10.4230/LIPICS.OPODIS.2023.28
https://doi.org/10.1016/J.TCS.2016.01.025
https://doi.org/10.4230/LIPICS.OPODIS.2019.25
https://doi.org/10.4230/LIPIcs.OPODIS.2019.25
https://doi.org/10.4230/LIPIcs.OPODIS.2019.25
https://doi.org/10.1007/S00446-024-00463-7
https://doi.org/10.1016/j.ic.2021.104702
https://doi.org/10.1016/j.ic.2021.104702
https://doi.org/10.1016/J.IPL.2023.106455
https://doi.org/10.1145/3631461.3631542

	Abstract
	1 Introduction
	2 Model and Preliminaries
	2.1 Robots
	2.2 Problems and Computational Relationships

	3 Comparisons in FSYNC
	4 Comparisons in SSYNC
	5 Cross-comparison in FSYNC and SSYNC
	6 Comparisons under ASYNC scheduler
	7 Conclusion
	Acknowledgments
	References

